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Abstract 
A bistatic radar network that consists of multiple separated radar transmitters (TXs) and receivers (RXs), aiming 

to detect a target on a set of points of interest (PoIs) is considered.  The detection range of a bistatic radar 

depends on both locations of the TX and RX.  The design of the bistatic radar network is investigated by 

studying the problem of optimally placing a number of radar transmitters and receivers by minimizing the 

maximum distance product between a PoI and its closest transmitter-receiver pair.  In our proposed Voronoi 

based multi-objective algorithm we optimally place the number of transmitters and receivers and also the 

efficient power distribution scheme is analyzed. Experimental results show that, the proposed scheme is a way 

forward from the previous schemes in terms of optimal placement and power distribution. 

 Index Terms- Multiobjective optimization, node placement, Point of Interest (PoI). 

 

I. INTRODUCTION 
RADAR has become an essential 

component of surveillance and defensive systems. 

Target detection is one of the main applications of 

radar. In contrast to passive sensing employed by 

traditional sensors, one salient feature of radar 

sensing is that the radar transmitter actively transmits 

radar signals and then the radar receiver collects the 

reflected energy from the target. Thus, radar has an 

ability to monitor wide areas rapidly during the day 

or at night and in different weather conditions. 

Traditionally, radars are classified into three 

categories [1]: a  mono-static radar is a single device 

where the transmitter and receiver are co-located; in a 

bistatic radar, the transmitter and receiver are placed 

at different sites; a multi-static radar consists of 

multiple separated transmitters and receivers. 

Although physical layer issues in radar have been 

extensively studied [2], very limited attention has 

been paid to the radar network design. Notably, 

Baker et al. [3] considered a network of mono-static 

radars. In [4], [5], the coverage area of a multi-static 

radar with one transmitter and multiple receivers was 

analyzed. We are thus motivated to study radar 

networks from a networking point of view. 

Specifically, we consider a bistatic radar network 

consisting of multiple transmitters and receivers, 

where any pair of transmitter and receiver operating 

the same frequency can form a bistatic radar. A 

potential attacker may choose to attack any point 

among a set of points of interest (PoIs). The bistatic 

radar network is deployed to detect the attacks and 

set an alert. To better defend the PoIs, the bistatic 

radar network should be carefully designed. 

       

One important issue in the design of the bistatic radar 

network is the placement of transmitters and 

receivers in the surveillance area. Mini-max-based 

placement is of great importance in the facility 

location problem, which is concerned with finding p 

facility locations that minimize the maximum 

distance between a demand point and its closest 

facility. This problem is also known as the P-center 

problem [6], and it is equivalent to Covering all the 

demand points by p circles with the smallest possible 

radius (the facilities are located at the centers of these 

circles). The problem of mini-maxed based bistatic 

radar placement is clearly quite different because the 

coverage area of a bistatic radar depends on the 

locations of both the transmitter and receiver, and is 

characterized by the Cassini oval, which is the locus 

of points with constant distance product to two fixed 

points [7]. 

We assume that the transmitters use 

orthogonal frequencies to illuminate signals for 

interference avoidance, and each receiver chooses 

one of the frequencies to receive the corresponding 

radar signals reflected by the target. For a given 

frequency selection scheme, the bistatic radar 

network can cover a subset of the PoIs. Since the 

attacker adaptively changes the PoI to attack, the 

receivers should also dynamically adapt their 

frequencies to cover different subsets of the PoIs. 

Accordingly, the scenario can be modeled as a 

repeated security game between the bistatic radar 

network and the attacker. 

Optimally placing the number of radar 

transmitters and receivers in the sense of minimizing 

the maximum distance product between a PoI and its 
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closest transmitter receiver pair causes high power 

consumption, low accurate as it doesn’t consider 

channel constraints. To overcome this the 

optimization is based on the encoding and objective 

function, for this Non dominant sortic genetic 

algorithm is proposed for the multi-objective 

optimization. 

 

II. PAST WORK 
In the evolutionary algorithms, various 

techniques have been used to overcome the problem 

of being trapped in local optimums, e.g., hill 

climbing and simulated annealing algorithms. These 

random techniques increase the probability of finding 

the global optimum. Inspired by this, we next show 

how to borrow the idea from the simulated annealing 

to the  

Voronoi algorithm in order to search for the global 

optimum, the randomized voronoi algorithm is 

proposed but it is less accurate in detection. 

 

A. Detection Range and PoI Coverage Vector 

For a given bistatic radar, the maximum-

range equation can be written as [1] 

D = (dt dr)max = ( 
𝑐

(4𝜋)²𝑆𝑁𝑅𝑚𝑖𝑛
)½                          _(1) 

where dt and dr are transmitter-target and receiver-

target distances, respectively; SNRmin is the 

minimum required signal to-noise ratio for detection; 

and C is the bistatic radar constant reflecting 

physical-layer parameters such as transmitter power, 

antenna gains of the transmitter-receiver pair, and 

radar cross section of the target. For ease of 

exposition, we assume that the bistatic radar constant 

C is the same for all transmitter-receiver pairs. 

 

B. Randomized Voronoi Algorithm 

Let I be a subset of  P, and F(I) be the 

optimal value of the objective function for the 1-

center problem regarding PoIs I. F(I) is 

given by 

     

F(I)=min𝑟{ max𝑝𝑖∈𝑖{𝑤𝑖𝑑 𝑝𝑖, 𝑟 }}                         _(2) 

 

where r is the receiver to be located. Let r∗ (I) be the 

optimal receiver location of problem (5), which is 

also the center with respect to the PoIs in I. For the 1-

center problem regarding all PoIs within the set I, 

there exists a subset, denoted by B(I), of no more 

than three PoIs with the following properties [6] 

 

 F(B(I)) = F(I);  

 

r*(B(I)) = r*(I). 

 

PoI pi is called the critical point if and only 

if pi ∈  B(Imax), ∀ pi ∈  P. The critical point will be 

closer to cn than to its original center, and thus it 

removed from B(Imax) and F(Imax) may decrease. 

Randomized Voronoi Algorithm for Receiver    

 

Placement  

Input: P PoIs P, M transmitters T, and N 

starting receiver’s locations Rs. 

Output: N final receiver’s locations R. 

1.  Compute the weight for each PoI based on fixed 

transmitter’s locations. 

2.  Construct the Voronoi partitions based on the N 

receiver’s locations. 

3.  Calculate the center cn for partition In,  n=1, . . 

.,N; identify the critical points in partition Imax. 

4.  Compute Δdn, and move cn toward one of the 

critical points with a random amount      

gn∈ [0,Δdn], n =1, . . .,N. Relocate the N 

receivers to the newly moved centers of their 

corresponding  Voronoi partitions. 

5.  If receivers move from iteration to iteration by 

less than ε, stop. Otherwise, go to Step 2. 

 

Randomized Voronoi Algorithm for Transmitter-

Receiver Placement 

Let x be the iteration number, x = 0. 

1. Choose the starting locations T [0] and R [0] for 

the transmitters and receivers, respectively. 

2. R[x+1] ← RRP (P, T [x],R[x],R); 

T [x+1] ← RTP (P,R[x+1], T [x], T ); 

x = x + 1. 

3. If the objective function value changes from 

iteration to iteration by less than a given threshold 

ε,stop. Otherwise, go to Step 2. 

 

C. The Radar Network 

We propose two learning algorithms for the 

radar network to choose the coverage vector. One is 

model based, and the other is model-free. 

  

Model-based Learning 

In the model-based learning algorithm, the 

radar network models the attacker’s strategy with the 

information about with the information about the 

attacker’s actual actions. 

It first forms a belief about the attacker’s strategy, 

and then uses the best response based on the formed 

belief. Since the radar network 

has incomplete information about the attacker’s 

actions, it uses the estimated empirical frequency of 

the attacker’s actions as the belief instead. Let â(t) = 

{â1(t)…âp(t)} 

be the estimated empirical frequency of the attacker’s 

actions until round t, where âi(t)  is the estimated 

empirical frequency of point pi being chosen by the 

attacker until round t. 
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Modified-regret-matching Learning 

In the model-free learning algorithm, the 

radar network uses the information about its own 

actions and realized utilities. In particular,a regret-

matching procedure is proposed, where the play 

probabilities are determined by the "regrets" for not 

having chosen other actions. 

 

D. The Attacker 

In this subsection, two model-free learning 

algorithms are proposed for the attacker based on the 

history of its own actions and realized utilities. Note 

that the attacker can not use a model-based algorithm, 

because it has no information about the radar 

network’s actions. 

 

Modified-regret-matching Learning 

Similarly, the attacker can also follow a 

modified-regret-matching procedure without its 

actual regret 𝑅𝑎
𝑡  (Pi ,Pj).  

           Let the attacker’s utility at each round be 

bounded in   𝑙 𝑎  (ℎ)𝑎 . If the attacker chose pi at 

round t, then it will choose pj at round  t + 1.  

 

No-external-regret Learning 

The external-regret is proposed to quantify 

the performance, which is defined in the following. If 

the attacker follows an algorithm, which chooses 

sequence of points P(1),… P(t), the attacker’s total 

utility until round  t is Ua(t). 

The attacker’s average external-regret after t rounds 

is defined by the attacker’s total utility until round t. 

Since the attacker can determine the number 

of attacks to launch, we assume that the attacker 

would like to play total T rounds. At the beginning of 

each round, the attacker runs Algorithm 6 to choose a 

point according to the distribution as shown in Step 

1. Note that this algorithm is different from the 

Exponential-weight algorithm by using a different 

computation method for estimated utility (Step 2). 

For the actual chosen point p(t), Algorithm 6 sets the 

estimated utility to be  

 

  Initialization: V(i) = 1  

       While t ∈ [1, T ] do 

1. Choose PoI pi according to the following 

distribution: ai(t). 

2. After choosing point p(t), the attacker can obtain 

the utility Ua(t) compute     

 the estimated utility. 

3. Update the weights by ∀𝑖 ∈  1, , … , 𝑝   
end while 

 

E. CORRELATED EQUILIBRIUM 

Before describing the convergence property 

of the repeated security game, we first introduce the 

following two definitions. 

EMPIRICAL DISTRIBUTIONS 

  The empirical distribution  of play up to 

round t, i.e., Zt, is a distribution on the space of both 

the radar network’s and the attacker’s joint actions   

                     S= C*P 

         Is the relative frequency that the 2-tuple of 

actions s has been played in the past t rounds, where 

sx is the realization of the2-tuple of actions at round 

x. The correlated equilibrium is a well-studied notion 

of rationality that generalizes the Nash equilibrium. 

Specifically, we define the correlated equilibrium in 

the repeated security game as follows: 

 

CORRELATED EQULIBRIUM 

       A probability distribution of  a correlated 

equilibrium of the repeated security game if, for 

every Ci,Cj. From the in-equality. We can see that 

when the recommendation for the radar network is to 

choose ci, choosing cj instead of ci cannot obtain a 

higher expected utility. Similarly, for the attacker, 

when the recommendation for it is to choose pi, 

choosing pj instead of pi cannot obtain a higher 

expected utility. The following theorem gives the 

convergence result of the repeated security game. 

 

III. PROPOSED SCHEME 
The significant contribution in the proposed 

work is to increase the detection accuracy and 

coverage area using the non dominant sortic genetic 

algorithm for multiple objective optimization. 

 

A.Voronoi based multiobjective optimization 

A stochastic model will be generated from a 

database. If the database does not exist, initial data 

will be generated randomly and evaluated. Based on 

the stochastic model, new promising individuals will 

be generated and evaluated. With the fast ranking 

method, the rank of the individuals will be calculated. 

Using the crowded tournament selection, individuals 

will be selected and stored in the database. The non-

selected individuals will be stored in a different 

database as”bad examples”. Note that when new data 

are added to the database, the stored rank information 

can become incorrect and thus should be updated. If a 

given termination condition is met, the VEDA will 

stop, and otherwise the same procedure will be 

repeated. In the database, design parameters, fitness 

values and ranks are stored. To construct stochastic 

models, a clustering method is used. In each cluster, 

principal component analysis (PCA) is carried out to 

reduce the dimensionality and to build up a stochastic 

model efficiently. The data points will be projected to 

a new coordinate system of a lower dimensionality 

determined by PCA. The minimum and maximum 

value for each axis will be calculated. Since PCA was 

carried out, linear dependency among the design 

parameters should be minimal. In the new coordinate 
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system, a Voronoi diagram will be generated as the 

stochastic model. Based on the rank of each mesh the 

probability for generating off spring will be 

calculated for each mesh. To generate a new 

individual, a mesh will be selected based on the 

assigned probability and a new individual will be 

generated within the selected mesh with a uniform 

probability. Finally, the new individual will be 

projected back to the real coordinate system. 

 

B. Non Dominant Sortic Genetic Algorithm 

A genetic algorithm (GA) is a search 

heuristic that mimics the process of natural evolution. 

This heuristic is routinely used to generate useful 

solutions to optimization andsear. Genetic algorithms 

belong to the larger clach problems of evolutionary 

algorithms (EA), which generate solutions to 

optimization problems using techniques inspired by 

natural evolution, such as inheritance, mutation, 

selection and crossover. 

In a genetic algorithm, a population of 

strings  which encode candidate solutions to an 

optimization problem, evolves toward better 

solutions. Traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings are 

also possible. The evolution usually starts from a 

population of randomly generated individuals and 

happens in generations. In each generation, the 

fitness of every individual in the population is 

evaluated, multiple individuals are stochastically 

selected from the current population and modified to 

form a new population. The new population is then 

used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a 

maximum number of generations has been produced, 

or a satisfactory fitness level has been reached for the 

population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory 

solution may or may not have been reached. 

A typical genetic algorithm requires: 

1. A genetic representation of the solution domain. 

2. A fitness function to evaluate the solution 

domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.NGSA flow diagram 

Initialization 

Initially many individual solutions are 

randomly generated to form an initial population. The 

population size depends on the nature of the problem. 

The population is generated randomly, covering the 

entire range of possible solutions. Occasionally, the 

solutions may be "seeded" in areas where optimal 

solutions are likely to be found. 

 

Selection  

During each successive generation, a 

proportion of the existing population is selected to 

breed a new generation. Individual solutions are 

selected through a fitness-based process, where fitter 

solutions are typically more likely to be selected. 

Other methods rate only a random sample of the 

population, as this process may be very time-

consuming. 

 

Crossover  Mutation  

The next step is to generate a second 

generation population of solutions from those 

selected through genetic operators: crossover and 

mutation. Although Crossover and Mutation are 

known as the main genetic operators, it is possible to 
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use other operators such as regrouping, colonization-

extinction, or migration in genetic algorithms. 

 

Optimal Value 

The accurate value is selected using this 

process and the iteration procedure is repeated. 

 

Algorithm 

Step:1.Choose the initial population of individuals 

 

Step:2.Evaluate the fitness of each individual in that 

population 

 

Step:3.Repeat on this generation until termination 

(time limit, sufficient fitness achieved, etc.) 

1. Select the best-fit individuals for reproduction 

2. Breed new individuals through crossover and 

mutation operations to give birth to offspring 

3. Evaluate the individual fitness of new 

individuals 

4.Replace least-fit population with new 

individuals. 

 

IV. NUMERICAL RESULT 
In this section, we present numerical results 

to illustrate the performance of proposed algorithms. 

We can observe that the performance is improved as 

the number of transmitters or receivers increases. 

Moreover, if the number of placed receivers is small, 

it will improve the performance greatly to add one 

more receiver. Using the Nondominated sortic 

genetic algorithm the coverage area and detection 

increases,the performance is evaluated. 

 
Fig 2. The coverage vector of an radar  obtained 

using NSGA 

  

The result shows the detection range and 

coverage area increases compared to the previous 

method. 

 

V. CONCLUSION 
In this paper we studied the bistatic radar 

network that consists of multiple separated radar 

transmitters (TXs) and receivers (RXs), aiming to 

detect a target on a set of points of interest (PoIs) is. 

The design of the bistatic radar network is 

investigated by studying the problem of optimally 

placing a number of radar transmitters and receivers 

by minimizing the maximum distance product 

between a PoI and its closest transmitter-receiver 

pair.  In our proposed Voronoi based multi-objective 

algorithm we optimally place the number of 

transmitters and receivers and also the efficient 

power distribution scheme is analyzed. Experimental 

results show that, the proposed scheme is a way 

forward from the previous schemes in terms of 

optimal placement and power distribution. 
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